Skip to content

    Increasing Revenues by Millions with Model-Driven Pricing

    Data Science at the Moneysupermarket Group

    For nearly two decades, the Moneysupermarket Group has helped UK consumers save money on insurance, travel, mobile services, utilities, and other everyday expenses. In 2019 alone, Moneysupermarket sites served 13.1 million active users and delivered an estimated £2 billion in savings to consumers through its four brands:

    • MoneySuperMarket, the UK's leading price comparison site for insurance, financial services, and utilities, helps consumers reduce their premiums and monthly bills.
    • TravelSupermarket helps consumers find the best deals on online flights, vacation packages, car rentals, and hotels.
    • MoneySavingExpert provides articles and tools to help consumers cut household costs and campaign for economic justice. The largest consumer affairs website in the UK draws approximately 16 million users monthly.
    • Decision Tech is a leading price comparison site for broadband and mobile phone plans.

    “Almost 80 percent of online adults in the UK visit one of our websites every year,” said Moneysupermarket’s Chief Data Officer Harvinder Atwal. “That’s more than the number of people who use Facebook in the country.”

    According to Atwal, it might seem like an easy job getting consumers to a price-comparison site—after all, who doesn’t want to save money? But it’s actually quite challenging, and involves sophisticated data science to be effective. Machine learning models inform every part of the company's work: optimizing customer journeys and experiences, personalizing offers and content, negotiating pricing with partners, and more. MoneySuperMarket uses the Domino platform to develop and deliver models faster and more efficiently than would otherwise be possible. The Domino platform saves each data scientist nearly 3/4 day each week through fewer manual processes and dependencies on platform admins.

    “We chose Domino because it is designed specifically for code-first data scientists and massively reduces friction in their workflows. It has become a major part of our DataOps ecosystem, helping us reduce wasted time and enforce better control.”

    —Harvinder Atwal, Chief Data Officer at Moneysupermarket


    Several years ago, MoneySuperMarket launched a massive technology re-platforming effort, moving from traditional on-premise IT to a multi-cloud strategy so it could more rapidly innovate and unlock new market opportunities while reducing infrastructure costs. However, as data scientists migrated their work to the cloud, they faced bottlenecks spinning up cloud resources and installing the tooling they needed.

    "We had a key challenge faced by many companies: How do we give data scientists fast access to the tooling and capabilities they need in the cloud?," asked Atwal. “How do we give them control so they can choose the types of virtual machines they need and deploy their own libraries without waiting for approvals? How do we make it easier for them to share knowledge and bring new data products to market faster? There was a lot of waste in the process—in terms of time, talent, and money—that we wanted to address.”


    MoneySuperMarket evaluated several data science technologies including Domino Data Lab, Databricks, and Dataiku. They searched for one that would facilitate their journey to the cloud, centralize data science, and accelerate the pace of model development and deployment. "We chose Domino because it is designed specifically for code-first data scientists and massively reduces friction in their workflows,” said Atwal. “It has become a major part of our DataOps ecosystem, helping us reduce wasted time and enforce better control.”

    Twenty data scientists were up and running on the Domino data science platform in a matter of weeks, and immediately saw efficiency gains due to four key capabilities:

    • Rapid access to data science tools and compute resources. Domino acts as an orchestration layer that allows data scientists to independently access containerized research environments and compute resources without sacrificing enterprise controls or compliance standards. "Domino allows our data scientists to be self-sufficient and far more efficient than they would be otherwise," said Atwal. “It frees our DevOps engineers to focus on process innovation so we can scale data science more quickly.”
    • Seamless virtual collaboration and knowledge management. With centralized workflows and automatic capture of every step and artifact associated with data science projects, researchers can easily find, discuss, and reuse existing work. This improves data science project management throughout the lifecycle. "It’s now much easier for data scientists working on the same project to work on the same code base, and the collaboration capabilities ensure we're not reinventing the wheel or duplicating past work every time we start a new project."
    • Easy model reproducibility and comparison. “Before, we had to plan configuration management,” said Atwal. “Now we can easily reproduce models between environments because the platform automatically tracks all the relevant information.”
    • Fast time to value. In Domino, data scientists quickly create and deploy interactive dashboards to get models into the hands of business stakeholders faster. “We’ve deployed interactive dashboards to help our business units better understand customers and streamline processes. So, for example, our web team now has visual model-driven dashboards that show how different website experiments are performing.”

    MoneySuperMarket runs Domino on Amazon Web Services (AWS) today to support development of ad hoc analysis, dashboards, and self-service tools for business staff across the organization. MoneySuperMarket will soon allow data scientists to run Domino on Google Cloud Platform (GCP) too. This will allow data scientists to build models on Domino that use an event-driven Kubernetes architecture, such as product recommendation engines that are integrated into customer communications.

    Domino allows our data scientists to be self-sufficient and far more efficient than they would be otherwise. It frees our DevOps engineers to focus on process innovation so we can scale data science more quickly.

    Harvinder Atwal, Chief Data Officer at Moneysupermarket

    "Domino’s Kubernetes-native version is designed to support our multi-cloud strategy and will enable us to develop models more efficiently regardless of what platform we use,” said Atwal.

    Use Case: Precision Pricing

    To maintain its leadership position, MoneySuperMarket must ensure its prices remain competitive in the marketplace. Its Commercial team works closely with partners, such as insurers, airlines, and banks, to identify opportunities where they can reduce rates for consumers while increasing profitability. To support this work, MoneySuperMarket's data science team developed a pricing tool on Domino that enables the Commercial team to model the impact that different price reductions might have for its business partners, including how each potential price cut will affect customer conversions and, ultimately, the partner’s revenue.

    "There's a tremendous amount of data science that goes into identifying how to reduce prices," said Atwal. "Using the pricing tool, our commercial teams can now have much more fruitful and intelligent discussions with partners. And our data scientists don't have to be involved in every single conversation.”

    The Domino Effect

    • Increasing revenue and profitability. To date, the data science team has used Domino to deploy approximately a dozen self-service dashboards and tools that help business staff identify opportunities to grow MoneySuperMarket’s business. "Our pricing tool, for example, has delivered a massive impact on revenue," said Atwal. "We estimate that we've realized millions of pounds in additional revenue for MoneySuperMarket and our partners, and strengthened our partner relationships as a result."
    • Scaling data science faster. With Domino's collaborative capabilities, data scientists can more quickly scale data science projects across the business. "The ability to import or fork off other people's projects has been far more valuable than we initially realized," said Atwal. "Now, if a data scientist builds a conversion model for a particular product, such as car insurance, then we can reuse that work in other product areas, like home insurance. It is providing massive time savings and enabling us to rapidly increase the impact."
    • Improving governance. By automatically tracking work, MoneySuperMarket can reproduce results for auditors and they have full visibility into precisely who worked on every model, what they did, how they deployed the model, and how it is used in production. "This ability to reproduce results is becoming increasingly important for governance and compliance activities," said Atwal. "With Domino, we now have an audit trail of every single change we make to models."

    Now see what the Domino Enterprise MLOps Platform can do for you